Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2293, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085515

RESUMO

Oxygen-containing carbons are promising supports and metal-free catalysts for many reactions. However, distinguishing the role of various oxygen functional groups and quantifying and tuning each functionality is still difficult. Here we investigate the role of Brønsted acidic oxygen-containing functional groups by synthesizing a diverse library of materials. By combining acid-catalyzed elimination probe chemistry, comprehensive surface characterizations, 15N isotopically labeled acetonitrile adsorption coupled with magic-angle spinning nuclear magnetic resonance, machine learning, and density-functional theory calculations, we demonstrate that phenolic is the main acid site in gas-phase chemistries and unexpectedly carboxylic groups are much less acidic than phenolic groups in the graphitized mesoporous carbon due to electron density delocalization induced by the aromatic rings of graphitic carbon. The methodology can identify acidic sites in oxygenated carbon materials in solid acid catalyst-driven chemistry.

2.
J Am Chem Soc ; 145(9): 5114-5124, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848504

RESUMO

Palladium-silver-based alloy catalysts have a great potential for CO-free hydrogen production from formic acid for fuel cell applications. However, the structural factors affecting the selectivity of formic acid decomposition are still debated. Herein, the decomposition pathways of formic acid on Pd-Ag alloys with different atomic configurations have been investigated to identify the alloy structures yielding high H2 selectively. Several PdxAg1-x surface alloys with various compositions were generated on a Pd(111) single crystal; their atomic distribution and electronic structure were determined by a combination of infrared reflection absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). It was established that the Ag atoms with Pd neighbors are electronically altered, and the degree of alteration correlates with the number of nearest Pd. Temperature-programmed reaction spectroscopy (TPRS) and DFT demonstrated that the electronically altered Ag domains create a new reaction pathway that selectively dehydrogenates formic acid. In contrast, Pd monomers surrounded by Ag are demonstrated to have a similar reactivity compared to pristine Pd(111), yielding CO and H2O in addition to the dehydrogenation products. However, they bind to the produced CO weaker than pristine Pd, demonstrating an enhancement in resistance to CO poisoning. This work therefore shows that surface Ag domains modified by interaction with subsurface Pd are the key active sites for selective decomposition of formic acid, while surface Pd atoms are detrimental to selectivity. Hence, the decomposition pathways can be tailored for CO-free H2 production on Pd-Ag alloy systems.

3.
Nat Commun ; 13(1): 5186, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057603

RESUMO

Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2 activation occurs heterolytically, leading to a hydride on Ru, an H+ on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2 and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance.

4.
Sci Adv ; 8(14): eabm8162, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385314

RESUMO

Zeolite nanosheets can be used for the fabrication of low-defect-density, thin, and oriented zeolite separation membranes. However, methods for manipulating their morphology are limited, hindering progress toward improved performance. We report the direct synthesis (i.e., without using exfoliation, etching, or other top-down processing) of thin, flat MFI nanosheets and demonstrate their use as high-performance membranes for xylene isomer separations. Our MFI nanosheets were synthesized using nanosheet fragments as seeds instead of the previously used MFI nanoparticles. The obtained MFI nanosheets exhibit improved thickness uniformity and are free of rotational and MEL intergrowths as shown by transmission electron microscopy (TEM) imaging. The nanosheets can form well-packed nanosheet coatings. Upon gel-free secondary growth, the obtained zeolite MFI membranes show high separation performance for xylene isomers at elevated temperature (e.g., p-xylene flux up to 1.5 × 10-3 mol m-2 s-1 and p-/o-xylene separation factor of ~600 at 250°C).

5.
Chem Rev ; 122(9): 8758-8808, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35254051

RESUMO

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.


Assuntos
Ligas , Óxidos , Catálise , Domínio Catalítico , Metais , Oxirredução , Óxidos/química
6.
Nat Commun ; 13(1): 420, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058452

RESUMO

Patterning metal-organic frameworks (MOFs) at submicrometer scale is a crucial yet challenging task for their integration in miniaturized devices. Here we report an electron beam (e-beam) assisted, bottom-up approach for patterning of two MOFs, zeolitic imidazolate frameworks (ZIF), ZIF-8 and ZIF-67. A mild pretreatment of metal oxide precursors with linker vapor leads to the sensitization of the oxide surface to e-beam irradiation, effectively inhibiting subsequent conversion of the oxide to ZIFs in irradiated areas, while ZIF growth in non-irradiated areas is not affected. Well-resolved patterns with features down to the scale of 100 nm can be achieved. This developer-free, all-vapor phase technique will facilitate the incorporation of MOFs in micro- and nanofabrication processes.

7.
Nanotechnology ; 33(13)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34911055

RESUMO

The growth of the silica (SiO2) bilayer (BL) films on transition metal (TM) surfaces creates a new class of two-dimensional (2D) crystalline, self-contained materials that interact weakly with the TM substrate. The BL-silica/TM heterojunction has shown unique physical and chemical properties that can lead to new chemical reaction mechanisms under the sub-nm confinement and broad potential applications ranging from surface protection, nano transistors, molecular sieves to nuclear waste removal. Novel applications of BL-silica can be further explored as a constituent of van der Waals assembly of 2D materials. Key to these applications is an unmet technical challenge to exfoliate and transfer BL-silica films in a large area from one substrate to another without material damage. In this study, we propose a new exfoliation mechanism based on gas molecule intercalation from density functional theory studies of the BL-silica/TM heterojunction. We found that the intercalation of O atoms and CO molecules at the BL-silica/TM interface weakens the BL-silica-TM hybridization, which results in an exponential decrease of the exfoliation energy against the interface distance as the coverage of interfacial species increases. This new intercalation mechanism opens up the opportunity for non-damaging exfoliation and transfer of large area silica bilayers.

8.
Small ; 17(39): e2103661, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34463426

RESUMO

Xenon (Xe) is a valuable and scarce noble gas used in various applications, including lighting, electronics, and anesthetics, among many others. It is also a volatile byproduct of the nuclear fission of uranium. A novel material architecture consisting of silicate nanocages in contact with a metal surface and an approach for trapping single Xe atoms in these cages is presented. The trapping is done at low Xe pressures and temperatures between 400 and 600 K, and the process is monitored in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. Release of the Xe from the cages occurs only when heating to temperatures above 750 K. A model that explains the experimental trapping kinetics is proposed and tested using Monte Carlo methods. Density functional theory calculations show activation energies for Xe exiting the cages consistent with experiments. This work can have significant implications in various fields, including Xe production, nuclear power, nuclear waste remediation, and nonproliferation of nuclear weapons. The results are also expected to apply to argon, krypton, and radon, opening an even more comprehensive range of applications.


Assuntos
Dióxido de Silício , Xenônio , Criptônio , Método de Monte Carlo , Temperatura
9.
J Chem Phys ; 154(20): 204701, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241183

RESUMO

Carbon-carbon coupling is an important step in many catalytic reactions, and performing sp3-sp3 carbon-carbon coupling heterogeneously is particularly challenging. It has been reported that PdAu single-atom alloy (SAA) model catalytic surfaces are able to selectively couple methyl groups, producing ethane from methyl iodide. Herein, we extend this study to NiAu SAAs and find that Ni atoms in Au are active for C-I cleavage and selective sp3-sp3 carbon-carbon coupling to produce ethane. Furthermore, we perform ab initio kinetic Monte Carlo simulations that include the effect of the iodine atom, which was previously considered a bystander species. We find that model NiAu surfaces exhibit a similar chemistry to PdAu, but the reason for the similarity is due to the role the iodine atoms play in terms of blocking the Ni atom active sites. Specifically, on NiAu SAAs, the iodine atoms outcompete the methyl groups for occupancy of the Ni sites leaving the Me groups on Au, while on PdAu SAAs, the binding strengths of methyl groups and iodine atoms at the Pd atom active site are more similar. These simulations shed light on the mechanism of this important sp3-sp3 carbon-carbon coupling chemistry on SAAs. Furthermore, we discuss the effect of the iodine atoms on the reaction energetics and make an analogy between the effect of iodine as an active site blocker on this model heterogeneous catalyst and homogeneous catalysts in which ligands must detach in order for the active site to be accessed by the reactants.

10.
Angew Chem Int Ed Engl ; 60(35): 19214-19221, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34189811

RESUMO

Synthesis of a pentasil-type zeolite with ultra-small few-unit-cell crystalline domains, which we call FDP (few-unit-cell crystalline domain pentasil), is reported. FDP is made using bis-1,5(tributyl ammonium) pentamethylene cations as structure directing agent (SDA). This di-quaternary ammonium SDA combines butyl ammonium, in place of the one commonly used for MFI synthesis, propyl ammonium, and a five-carbon nitrogen-connecting chain, in place of the six-carbon connecting chain SDAs that are known to fit well within the MFI pores. X-ray diffraction analysis and electron microscopy imaging of FDP indicate ca. 10 nm crystalline domains organized in hierarchical micro-/meso-porous aggregates exhibiting mesoscopic order with an aggregate particle size up to ca. 5 µm. Al and Sn can be incorporated into the FDP zeolite framework to produce active and selective methanol-to-hydrocarbon and glucose isomerization catalysts, respectively.

11.
Chem Commun (Camb) ; 57(43): 5250-5253, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904549

RESUMO

Modification of the gas permeation properties of ZIF-8 membranes using electron beam irradiation is reported. 3.8 and 3.2 fold enhancements in ideal selectivity for CO2/N2 and CO2/CH4 can be achieved with less than 1 min exposure time.


Assuntos
Dióxido de Carbono/química , Elétrons , Imidazóis/química , Estruturas Metalorgânicas/química , Metano/química , Nitrogênio/química , Tamanho da Partícula
12.
Nat Commun ; 12(1): 1435, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664267

RESUMO

Although Cu/ZnO-based catalysts have been long used for the hydrogenation of CO2 to methanol, open questions still remain regarding the role and the dynamic nature of the active sites formed at the metal-oxide interface. Here, we apply high-pressure operando spectroscopy methods to well-defined Cu and Cu0.7Zn0.3 nanoparticles supported on ZnO/Al2O3, γ-Al2O3 and SiO2 to correlate their structure, composition and catalytic performance. We obtain similar activity and methanol selectivity for Cu/ZnO/Al2O3 and CuZn/SiO2, but the methanol yield decreases with time on stream for the latter sample. Operando X-ray absorption spectroscopy data reveal the formation of reduced Zn species coexisting with ZnO on CuZn/SiO2. Near-ambient pressure X-ray photoelectron spectroscopy shows Zn surface segregation and the formation of a ZnO-rich shell on CuZn/SiO2. In this work we demonstrate the beneficial effect of Zn, even in diluted form, and highlight the influence of the oxide support and the Cu-Zn interface in the reactivity.

13.
Angew Chem Int Ed Engl ; 60(19): 10888-10894, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462957

RESUMO

Interfacially confined microenvironments have recently gained attention in catalysis, as they can be used to modulate reaction chemistry. The emergence of a 2D nanospace at the interface between a 2D material and its support can promote varying kinetic and energetic schemes based on molecular level confinement effects imposed in this reduced volume. We report on the use of a 2D oxide cover, bilayer silica, on catalytically active Pd(111) undergoing the CO oxidation reaction. We "uncover" mechanistic insights about the structure-activity relationship with and without a 2D silica overlayer using in situ IR and X-ray spectroscopy and mass spectrometry methods. We find that the CO oxidation reaction on Pd(111) benefits from confinement effects imposed on surface adsorbates under 2D silica. This interaction results in a lower and more dispersed coverage of CO adsorbates with restricted CO adsorption geometries, which promote oxygen adsorption and lay the foundation for the formation of a reactive surface oxide that produces higher CO2 formation rates than Pd alone.

14.
Angew Chem Int Ed Engl ; 60(17): 9316-9320, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33481308

RESUMO

Vapor-phase treatment of ZIF-8 membranes with manganese(II) acetylacetonate (Mn(acac)2 ) allows permselectivity tuning. Propylene/propane selectivity increases from 31 to 210 after the Mn(acac)2 treatment at 165 °C for 30 min, while selectivities increase from 14.6 to 242 for H2 /CH4 , from 2.9 to 38 for CO2 /CH4 , from 2.4 to 29 for CO2 /N2 , and from 2.9 to 7.5 for O2 /N2 , after Mn(acac)2 treatment at 175 °C for 30 min. Stable equimolar propylene/propane mixture selectivity of 165 at ambient temperature and 4 bar equimolar feed with a propylene flux of 8.3×10-4  mol m-2 s-1 is established. A control experiment excludes thermal treatment alone causing these changes. XPS analysis reveals the presence of Mn(acac)2 on the outer surface of the vapor-treated ZIF-8 membranes while no other changes are detectable by X-ray diffraction and infrared spectroscopy.

15.
Small ; 16(38): e2002120, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32812375

RESUMO

A challenge in the synthesis of single-wall carbon nanotubes (SWCNTs) is the lack of control over the formation and evolution of catalyst nanoparticles and the lack of control over their size or chirality. Here, zeolite MFI nanosheets (MFI-Ns) are used to keep cobalt (Co) nanoparticles stable during prolonged annealing conditions. Environmental transmission electron microscopy (ETEM) shows that the MFI-Ns can influence the size and shape of nanoparticles via particle/support registry, which leads to the preferential docking of nanoparticles to four or fewer pores and to the regulation of the SWCNT synthesis products. The resulting SWCNT population exhibits a narrow diameter distribution and SWCNTs of nearly all chiral angles, including sub-nm zigzag (ZZ) and near-ZZ tubes. Theoretical simulations reveal that the growth of these unfavorable tubes from unsupported catalysts leads to the rapid encapsulation of catalyst nanoparticles bearing them; their presence in the growth products suggests that the MFI-Ns prevent nanoparticle encapsulation and prologue ZZ and near-ZZ SWCNT growth. These results thus present a path forward for controlling nanoparticle formation and evolution, for achieving size- and shape-selectivity at high temperature, and for controlling SWCNT synthesis.

16.
J Chem Phys ; 152(8): 084705, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113358

RESUMO

Ambient pressure x-ray photoelectron spectroscopy (AP-XPS) supported by density functional theory (DFT) calculations was used to characterize the interaction of water with two-dimensional (2D) silica and aluminosilicate bilayers on Pd(111). Starting with oxygen adsorbed at the SiO2/Pd interface, exposure to water caused the SiO2-derived XPS peaks to shift to higher binding energy and the removal of an O 1s feature associated with interfacial adsorbed oxygen. These observations were attributed to the formation of a mixed water-hydroxyl interface, which eliminates the interfacial dipolar layer, and its associated electrostatic potential, created by adsorbed oxygen. Interfacial oxygen also reacted with H2 to produce adsorbed water which also caused an upward binding energy shift of the SiO2 peaks. Spectra recorded under 0.5 Torr water revealed additional water adsorption and a further shift of the overlayer peaks to higher binding energy. Incorporating Al into the 2D material caused the bilayer peaks to shift to lower binding energy which could be explained by electron donation from the metal to the bilayer. Although the stronger interaction between the bilayer and Pd substrate should restrict interfacial adsorption and reaction, similar trends were observed for water and hydrogen exposure to interfacial adsorbed oxygen. Less water adsorption was observed at the aluminosilicate interface which is a consequence of Al strengthening the bond to the metal substrate. The results reveal how the sensitivity of XPS to interfacial dipoles can be exploited to distinguish reactions taking place in confined spaces under 2D layers and how tuning the composition of the 2D layer can impact such reactions.

17.
Nano Lett ; 20(2): 918-928, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815484

RESUMO

We combined advanced TEM (HRTEM, HAADF, EELS) with solid-state (SS)MAS NMR and electroanalytical techniques (GITT, etc.) to understand the site-specific sodiation of selenium (Se) encapsulated in a nanoporous carbon host. The architecture employed is representative of a wide number of electrochemically stable and rate-capable Se-based sodium metal battery (SMB) cathodes. SSNMR demonstrates that during the first sodiation, the Se chains are progressively cut to form an amorphous mixture of polyselenides of varying lengths, with no evidence for discrete phase transitions during sodiation. It also shows that Se nearest the carbon pore surface is sodiated first, leading to the formation of a core-shell compositional profile. HRTEM indicates that the vast majority of the pore-confined Se is amorphous, with the only localized presence of nanocrystalline equilibrium Na2Se2 (hcp) and Na2Se (fcc). A nanoscale fracture of terminally sodiated Na-Se is observed by HAADF, with SSNMR, indicating a physical separation of some Se from the carbon host after the first cycle. GITT reveals a 3-fold increase in Na+ diffusivity at cycle 2, which may be explained by the creation of extra interfaces. These combined findings highlight the complex phenomenology of electrochemical phase transformations in nanoconfined materials, which may profoundly differ from their "free" counterparts.

18.
J Phys Condens Matter ; 31(6): 063001, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30523939

RESUMO

There are a rapidly growing number of studies showing exciting new opportunities in the way confinement effects on surfaces affect the properties of materials and their chemistry. These effects have been observed recently under two-dimensional (2D) van der Waals materials such as a graphene and boron nitride and for the case of supported 2D-porous oxides, including silicates, aluminosilicates and zeolite nanosheets. This review summarizes the current state of the art in this area of research and how confinement effects in 2D systems relate to those found in 3D porous and layered materials. The focus of this review is put in 2D-materials with inherent porosity, such as 2D-porous oxides. An outlook is also given for the future of this exciting emerging area.

19.
J Phys Chem B ; 122(2): 855-863, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29091455

RESUMO

The role of oxygen in the activation of C-H bonds in methane on clean and oxygen-precovered Cu(111) and Cu2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and "moderate pressures" was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C-H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole-dipole attraction of O-H and Cu-CH3 species. The C-H bond activation barriers on Cu2O(111) surfaces are large due to the weak stabilization of H and CH3 fragments.

20.
J Phys Chem B ; 122(2): 472-478, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28800394

RESUMO

The interaction of water vapor with a single crystal ZnO(101̅0) surface was investigated using synchrotron-based ambient pressure X-ray photoelectron spectroscopy (APXPS). Two isobaric experiments were performed at 0.3 and 0.07 Torr water vapor pressure at sample temperatures ranging from 750 to 295 K up to a maximum of 2% relative humidity (RH). Below 10-4 % RH the ZnO(101̅0) interface is covered with ∼0.25 monolayers of OH groups attributed to dissociation at nonstoichiometric defect sites. At ∼10-4 % RH there is a sharp onset in increased surface hydroxylation attributed to reaction at stoichiometric terrace sites. The surface saturates with an OH monolayer ∼0.26 nm thick and occurs in the absence of any observable molecularly bound water, suggesting the formation of a 1 × 1 dissociated monolayer structure. This is in stark contrast to ultrahigh vacuum experiments and molecular simulations that show the optimum structure is a 2 × 1 partially dissociated H2O/OH monolayer. The sharp onset to terrace site hydroxylation at ∼10-4 % RH for ZnO(101̅0) contrasts with APXPS observations for MgO(100) which show a sharp onset at 10-2 % RH. A surface thermodynamic analysis reveals that this shift to lower RH for ZnO(101̅0) compared to MgO(100) is due to a more favorable Gibbs free energy for terrace site hydroxylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...